Add lightmap materials

This commit is contained in:
Alexander Klingenbeck 2023-06-19 18:17:33 +02:00
parent 0326eb9c81
commit 5eee29160c
3 changed files with 262 additions and 295 deletions

View File

@ -9,6 +9,7 @@
"lightmapper.h": "c",
"compare": "c",
"memory": "c",
"rlgl.h": "c"
"rlgl.h": "c",
"random": "c"
}
}

View File

@ -9,9 +9,9 @@
#include <rlgl.h>
#include <raymath.h>
#include <external/glad.h>
#define LIGHTMAPPER_IMPLEMENTATION
#define LM_DEBUG_INTERPOLATION
#include "lightmapper.h"
#define RLIGHTMAPPER_IMPLEMENTATION
#include "rlightmapper.h"
typedef struct
{
@ -25,281 +25,9 @@ typedef struct
GLuint u_intensity;
} scene_t;
static void FloatVToMatrix(float *array, struct Matrix *matrix) {
matrix->m0 = array[0];
matrix->m1 = array[1];
matrix->m2 = array[2];
matrix->m3 = array[3];
matrix->m4 = array[4];
matrix->m5 = array[5];
matrix->m6 = array[6];
matrix->m7 = array[7];
matrix->m8 = array[8];
matrix->m9 = array[9];
matrix->m10 = array[10];
matrix->m11 = array[11];
matrix->m12 = array[12];
matrix->m13 = array[13];
matrix->m14 = array[14];
matrix->m15 = array[15];
}
static void drawScene(scene_t *scene){
DrawModel(scene->raylib_model, (Vector3){ 0,0,0 }, 1, WHITE);
DrawModel(scene->model2, (Vector3){ -1,0.3,0.0 }, 0.05, RED);
}
typedef struct Lightmapper {
void * lm_handle;
float * data;
int w;
int h;
float progress;
} Lightmapper;
typedef struct LightmapperConfig {
int hemisphereSize;
float zNear;
float zFar;
Color backgroundColor;
int interpolationPasses;
float interpolationThreshold;
float cameraToSurfaceDistanceModifier;
} LightmapperConfig;
LightmapperConfig GetDefaultLightmapperConfig(){
return (LightmapperConfig){
64, 0.001f, 100.0f, WHITE, 2, 0.01f, 0.0f
};
}
Lightmapper LoadLightmapper(int w, int h, Mesh mesh, LightmapperConfig cfg){
Lightmapper lm = {0};
lm_context* ctx = lm.lm_handle = lmCreate(cfg.hemisphereSize, cfg.zNear, cfg.zFar,
cfg.backgroundColor.r / (float)255, cfg.backgroundColor.g / (float)255, cfg.backgroundColor.b / (float)255,
cfg.interpolationPasses, cfg.interpolationThreshold, cfg.cameraToSurfaceDistanceModifier);
if(ctx == NULL){
TraceLog(LOG_ERROR, "Unable to create lightmapper. Init failed.");
goto RETURN;
}
lm.w = w;
lm.h = h;
float *data = lm.data = calloc(w * h * 4, sizeof(float));
lmSetTargetLightmap(ctx, data, w, h, 4);
const void* indices = NULL;
lm_type indicesType = LM_NONE;
int count = mesh.vertexCount;
if(mesh.indices != NULL){
indices = mesh.indices;
indicesType = LM_UNSIGNED_SHORT;
count = mesh.triangleCount * 3;
}
lmSetGeometry(ctx, NULL,
LM_FLOAT, (unsigned char*)mesh.vertices, 0,
LM_FLOAT , (unsigned char*)mesh.normals, 0,
LM_FLOAT, (unsigned char*)mesh.texcoords, 0,
count, indicesType, indices);
RETURN:
return lm;
}
void UnloadLightmapper(Lightmapper lm){
free(lm.data);
lmDestroy((lm_context *)lm.lm_handle);
}
static Matrix mProjection;
static Matrix mModelview;
void BeginLightmap()
{
rlEnableDepthTest();
rlDisableColorBlend();
rlDisableBackfaceCulling();
mProjection = rlGetMatrixProjection();
mModelview = rlGetMatrixModelview();
}
void EndLightmap(){
//rlDisableDepthTest();
rlEnableColorBlend();
rlEnableBackfaceCulling();
int w = GetScreenWidth() * GetWindowScaleDPI().x;
int h = GetScreenHeight() * GetWindowScaleDPI().y;
rlViewport(0, 0, w, h);
rlDisableFramebuffer();
glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
rlSetMatrixModelview(mModelview);
rlSetMatrixProjection(mProjection);
}
static int vp[4];
static float view[16], projection[16];
static Matrix matView, matProj;
bool BeginLightmapFragment(Lightmapper * lm){
lm_bool status = lmBegin((lm_context *)lm->lm_handle, vp, view, projection);
if(status){
rlViewport(vp[0], vp[1], vp[2], vp[3]);
FloatVToMatrix(view, &matView);
FloatVToMatrix(projection, &matProj);
rlSetMatrixModelview(matView);
rlSetMatrixProjection(matProj);
//float intensity = 1.0f;
//SetShaderValue(scene->shader, scene->u_intensity, &intensity, SHADER_UNIFORM_FLOAT);
} else {
lm->progress = 1.0f;
}
return (bool)status;
}
void EndLightmapFragment(Lightmapper * lm){
lm->progress = lmProgress((lm_context *)lm->lm_handle);
lmEnd((lm_context *)lm->lm_handle);
}
Image LoadImageFromLightmapper(Lightmapper lm){
Image im = { 0 };
if(lm.progress < 1.0f){
TraceLog(LOG_ERROR, "Lightmapping is not finished");
return im;
}
// postprocess texture
float *temp = calloc(lm.w * lm.h * 4, sizeof(float));
for (int i = 0; i < 16; i++)
{
lmImageDilate(lm.data, temp, lm.w, lm.h, 4);
lmImageDilate(temp, lm.data, lm.w, lm.h, 4);
}
lmImageSmooth(lm.data, temp, lm.w, lm.h, 4);
lmImageDilate(temp, lm.data, lm.w, lm.h, 4);
lmImagePower(lm.data, lm.w, lm.h, 4, 1.0f / 2.2f, 0x7); // gamma correct color channels
free(temp);
unsigned char *tempub = (unsigned char*)calloc(lm.w * lm.h * 4, sizeof(unsigned char));
lmImageFtoUB(lm.data, tempub, lm.w, lm.h, 4, 1.0f);
im.data = tempub;
im.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
im.height = lm.w;
im.width = lm.h;
im.mipmaps = 1;
return im;
}
static int bake(scene_t *scene)
{
lm_context *ctx = lmCreate(
128, // hemisphere resolution (power of two, max=512)
0.001f, 100.0f, // zNear, zFar of hemisphere cameras
1.0f, 1.0f, 1.0f, // background color (white for ambient occlusion)
2, 0.01f, // lightmap interpolation threshold (small differences are interpolated rather than sampled)
// check debug_interpolation.tga for an overview of sampled (red) vs interpolated (green) pixels.
0.0f); // modifier for camera-to-surface distance for hemisphere rendering.
// tweak this to trade-off between interpolated normals quality and other artifacts (see declaration).
int w = scene->w, h = scene->h;
float *data = calloc(w * h * 4, sizeof(float));
lmSetTargetLightmap(ctx, data, w, h, 4);
Mesh m = scene->raylib_model.meshes[0];
lmSetGeometry(ctx, NULL, // no transformation in this example
LM_FLOAT, (unsigned char*)m.vertices, 0,
LM_FLOAT , (unsigned char*)m.normals, 0,
LM_FLOAT, (unsigned char*)m.texcoords, 0,
m.vertexCount, LM_NONE, 0);
int vp[4];
float view[16], projection[16];
double lastUpdateTime = 0.0;
rlEnableDepthTest();
rlDisableColorBlend();
rlDisableBackfaceCulling();
// TODO: Write (gl_FrontFacing ? 1.0 : 0.0) to the alpha channel in custom shader
//Shader oldShader = scene->raylib_model.materials[0].shader;
//scene->raylib_model.materials[0].shader = scene->raylib_shader;
while (lmBegin(ctx, vp, view, projection))
{
rlViewport(vp[0], vp[1], vp[2], vp[3]);
Matrix matView, matProj;
FloatVToMatrix(view, &matView);
FloatVToMatrix(projection, &matProj);
rlSetMatrixModelview(matView);
rlSetMatrixProjection(matProj);
float intensity = 1.0f;
SetShaderValue(scene->shader, scene->u_intensity, &intensity, SHADER_UNIFORM_FLOAT);
drawScene(scene);
// display progress every second (printf is expensive)
double time = GetTime();
if (time - lastUpdateTime > 0.05)
{
lastUpdateTime = time;
printf("\r%6.2f%%", lmProgress(ctx) * 100.0f);
fflush(stdout);
}
lmEnd(ctx);
}
rlDisableDepthTest();
rlEnableColorBlend();
rlEnableBackfaceCulling();
//scene->raylib_model.materials[0].shader = oldShader;
lmDestroy(ctx);
// postprocess texture
float *temp = calloc(w * h * 4, sizeof(float));
for (int i = 0; i < 16; i++)
{
lmImageDilate(data, temp, w, h, 4);
lmImageDilate(temp, data, w, h, 4);
}
lmImageSmooth(data, temp, w, h, 4);
lmImageDilate(temp, data, w, h, 4);
lmImagePower(data, w, h, 4, 1.0f / 2.2f, 0x7); // gamma correct color channels
free(temp);
unsigned char *tempub = (unsigned char*)calloc(w * h * 4, sizeof(unsigned char));
lmImageFtoUB(data, tempub, w, h, 4, 1.0f);
Image im;
im.data = tempub;
im.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
im.height = h;
im.width = w;
ExportImage(im,"result.png");
// upload result
UnloadTexture(scene->raylib_texture);
Texture texture;
texture.id = rlLoadTexture(tempub, w, h, RL_PIXELFORMAT_UNCOMPRESSED_R8G8B8A8, 1);
texture.width = w;
texture.height = h;
texture.mipmaps = 1;
texture.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
scene->raylib_texture = texture;
free(tempub);
scene->raylib_model.materials[0].maps[MATERIAL_MAP_DIFFUSE].texture = texture;
// // save result to a file
// if (lmImageSaveTGAf("result.tga", data, w, h, 4, 1.0f))
// printf("Saved result.tga\n");
// free(data);
return 1;
//DrawModel(scene->model2, (Vector3){ -10,10,0.0 }, 3,RAYWHITE);
}
int main(int argc, char* argv[])
@ -313,7 +41,7 @@ int main(int argc, char* argv[])
scene.shader = LoadShader("assets/shaders/glsl330/default.vs","assets/shaders/glsl330/default.fs");
scene.u_intensity = GetShaderLocation(scene.shader, "intensity");
// load mesh
scene.raylib_model = LoadModel("thirdparty/lightmapper/example/gazebo.obj");
scene.raylib_model = LoadModel("monkey.obj");
scene.raylib_model.materials[0].shader = scene.shader;
scene.model2 = LoadModel("thirdparty/lightmapper/example/cube.obj");
scene.model2.materials[0].shader = scene.shader;
@ -331,32 +59,35 @@ int main(int argc, char* argv[])
camera.projection = CAMERA_PERSPECTIVE; // Camera mode type
scene.camera = camera;
Lightmapper lm = LoadLightmapper(scene.w, scene.h, scene.raylib_model.meshes[0], GetDefaultLightmapperConfig());
LightmapperConfig config = GetDefaultLightmapperConfig();
config.backgroundColor = (Color){6,0,10};
//config.hemisphereSize = 512;
Lightmapper lm = LoadLightmapper(scene.w, scene.h, scene.raylib_model.meshes[0], config);
Material lmMat = LoadMaterialLightmapper(BLACK, 0);
Mesh light = GenMeshCube(0.3,0.3, 0.3);
Material lightMaterial = LoadMaterialLightmapper(ORANGE, 1.0f);
while (!WindowShouldClose())
{
if(IsMouseButtonDown(MOUSE_BUTTON_LEFT))
UpdateCamera(&scene.camera, CAMERA_THIRD_PERSON);
if(lm.progress < 1.0f){
double startTime = GetTime();
BeginLightmap();
while(BeginLightmapFragment(&lm)){
float intensity = 1.0f;
SetShaderValue(scene.shader, scene.u_intensity, &intensity, SHADER_UNIFORM_FLOAT);
drawScene(&scene);
DrawMesh(scene.raylib_model.meshes[0], lmMat, MatrixIdentity());
DrawMesh(light, lightMaterial, MatrixTranslate(0,1.0,0));
EndLightmapFragment(&lm);
// display progress every second (printf is expensive)
double time = GetTime();
if (GetTime() - startTime > 0.03)
{
printf("\r%6.2f%%", lm.progress * 100.0f);
fflush(stdout);
break;
}
if (GetTime() - startTime > 0.03) break;
}
EndLightmap();
if(lm.progress == 1.0f){
Image img = LoadImageFromLightmapper(lm);
ExportImage(img, "my_result.png");
//UnloadTexture(scene.raylib_texture);
//ExportImage(img, "my_result.png");
UnloadTexture(scene.raylib_texture);
scene.raylib_texture = LoadTextureFromImage(img);
scene.raylib_model.materials[0].maps[MATERIAL_MAP_DIFFUSE].texture = scene.raylib_texture;
UnloadLightmapper(lm);
@ -365,11 +96,13 @@ int main(int argc, char* argv[])
BeginDrawing();
ClearBackground(BLUE);
BeginMode3D(scene.camera);
float intensity = 1.0f;
SetShaderValue(scene.shader, scene.u_intensity, &intensity, SHADER_UNIFORM_FLOAT);
drawScene(&scene);
EndMode3D();
// printf("%d\n",(int)(lm.progress*GetScreenWidth()));
if(lm.progress < 1.0f){
DrawRectangle(0,0,GetScreenWidth(),20, Fade(GREEN,0.5));

233
src/rlightmapper.h Normal file
View File

@ -0,0 +1,233 @@
#ifndef RLIGHTMAPPER_H
#define RLIGHTMAPPER_H
#include <raylib.h>
typedef struct Lightmapper {
void * lm_handle;
float * data;
int w;
int h;
float progress;
} Lightmapper;
typedef struct LightmapperConfig {
int hemisphereSize;
float zNear;
float zFar;
Color backgroundColor;
int interpolationPasses;
float interpolationThreshold;
float cameraToSurfaceDistanceModifier;
} LightmapperConfig;
LightmapperConfig GetDefaultLightmapperConfig();
Lightmapper LoadLightmapper(int w, int h, Mesh mesh, LightmapperConfig cfg);
Material LoadMaterialLightmapper(Color emissiveColor, float intensity);
void UnloadLightmapper(Lightmapper lm);
void BeginLightmap();
void EndLightmap();
bool BeginLightmapFragment(Lightmapper * lm);
void EndLightmapFragment(Lightmapper * lm);
Image LoadImageFromLightmapper(Lightmapper lm);
#endif
#if defined(RLIGHTMAPPER_IMPLEMENTATION)
#define LIGHTMAPPER_IMPLEMENTATION
//#define LM_DEBUG_INTERPOLATION
#include "lightmapper.h"
static const char* fs =
"#version 330\n"
"in vec2 fragTexCoord;\n"
"in vec4 fragColor;\n"
"out vec4 finalColor;\n"
"uniform sampler2D texture0;\n"
"uniform vec4 colDiffuse;\n"
"void main()\n"
"{\n"
" vec4 texelColor = texture(texture0, fragTexCoord);\n"
" texelColor = texelColor * colDiffuse * fragColor * vec4(intensity, intensity, intensity, 1.0);\n"
" finalColor = vec4(texelColor.rgb, (gl_FrontFacing ? 1.0 : 0.0));\n"
"}";
const char* vs = "#version 330\n"
"in vec3 vertexPosition;\n"
"in vec2 vertexTexCoord;\n"
"in vec4 vertexColor;\n"
"out vec2 fragTexCoord;\n"
"out vec4 fragColor;\n"
"uniform mat4 mvp;\n"
"void main()\n"
"{\n"
" fragTexCoord = vertexTexCoord;\n"
" fragColor = vertexColor;\n"
" gl_Position = mvp * vec4(vertexPosition, 1.0);\n"
"}";
static void FloatVToMatrix(float *array, struct Matrix *matrix) {
matrix->m0 = array[0];
matrix->m1 = array[1];
matrix->m2 = array[2];
matrix->m3 = array[3];
matrix->m4 = array[4];
matrix->m5 = array[5];
matrix->m6 = array[6];
matrix->m7 = array[7];
matrix->m8 = array[8];
matrix->m9 = array[9];
matrix->m10 = array[10];
matrix->m11 = array[11];
matrix->m12 = array[12];
matrix->m13 = array[13];
matrix->m14 = array[14];
matrix->m15 = array[15];
}
LightmapperConfig GetDefaultLightmapperConfig(){
return (LightmapperConfig){
64, 0.001f, 100.0f, WHITE, 2, 0.01f, 0.0f
};
}
static Shader defaultShader;
Material LoadMaterialLightmapper(Color emissiveColor, float emissiveIntensity)
{
if(defaultShader.id == 0) defaultShader = LoadShaderFromMemory(vs, fs);
Material mat = LoadMaterialDefault();
mat.shader = defaultShader;
mat.maps[MATERIAL_MAP_DIFFUSE].color = emissiveColor; // Diffuse color
//mat.params[0] = emissiveIntensity;
return mat;
}
Lightmapper LoadLightmapper(int w, int h, Mesh mesh, LightmapperConfig cfg){
Lightmapper lm = {0};
lm_context* ctx = lm.lm_handle = lmCreate(cfg.hemisphereSize, cfg.zNear, cfg.zFar,
cfg.backgroundColor.r / (float)255, cfg.backgroundColor.g / (float)255, cfg.backgroundColor.b / (float)255,
cfg.interpolationPasses, cfg.interpolationThreshold, cfg.cameraToSurfaceDistanceModifier);
if(ctx == NULL){
TraceLog(LOG_ERROR, "Unable to create lightmapper. Init failed.");
goto RETURN;
}
lm.w = w;
lm.h = h;
float *data = lm.data = calloc(w * h * 4, sizeof(float));
lmSetTargetLightmap(ctx, data, w, h, 4);
const void* indices = NULL;
lm_type indicesType = LM_NONE;
int count = mesh.vertexCount;
if(mesh.indices != NULL){
indices = mesh.indices;
indicesType = LM_UNSIGNED_SHORT;
count = mesh.triangleCount * 3;
}
lmSetGeometry(ctx, NULL,
LM_FLOAT, (unsigned char*)mesh.vertices, 0,
LM_FLOAT , (unsigned char*)mesh.normals, 0,
LM_FLOAT, (unsigned char*)mesh.texcoords, 0,
count, indicesType, indices);
RETURN:
return lm;
}
void UnloadLightmapper(Lightmapper lm){
free(lm.data);
lmDestroy((lm_context *)lm.lm_handle);
}
static Matrix mProjection;
static Matrix mModelview;
void BeginLightmap()
{
rlEnableDepthTest();
rlDisableColorBlend();
rlDisableBackfaceCulling();
mProjection = rlGetMatrixProjection();
mModelview = rlGetMatrixModelview();
}
void EndLightmap(){
//rlDisableDepthTest();
rlEnableColorBlend();
rlEnableBackfaceCulling();
int w = GetScreenWidth() * GetWindowScaleDPI().x;
int h = GetScreenHeight() * GetWindowScaleDPI().y;
rlViewport(0, 0, w, h);
rlDisableFramebuffer();
glUseProgram(0);
glBindTexture(GL_TEXTURE_2D, 0);
glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);
glBindVertexArray(0);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
rlSetMatrixModelview(mModelview);
rlSetMatrixProjection(mProjection);
}
static int vp[4];
static float view[16], projection[16];
static Matrix matView, matProj;
bool BeginLightmapFragment(Lightmapper * lm){
lm_bool status = lmBegin((lm_context *)lm->lm_handle, vp, view, projection);
if(status){
rlViewport(vp[0], vp[1], vp[2], vp[3]);
FloatVToMatrix(view, &matView);
FloatVToMatrix(projection, &matProj);
rlSetMatrixModelview(matView);
rlSetMatrixProjection(matProj);
} else {
lm->progress = 1.0f;
}
return (bool)status;
}
void EndLightmapFragment(Lightmapper * lm){
lm->progress = lmProgress((lm_context *)lm->lm_handle);
lmEnd((lm_context *)lm->lm_handle);
}
Image LoadImageFromLightmapper(Lightmapper lm){
Image im = { 0 };
if(lm.progress < 1.0f){
TraceLog(LOG_ERROR, "Lightmapping is not finished");
return im;
}
// postprocess texture
float *temp = calloc(lm.w * lm.h * 4, sizeof(float));
for (int i = 0; i < 16; i++)
{
lmImageDilate(lm.data, temp, lm.w, lm.h, 4);
lmImageDilate(temp, lm.data, lm.w, lm.h, 4);
}
lmImageSmooth(lm.data, temp, lm.w, lm.h, 4);
lmImageDilate(temp, lm.data, lm.w, lm.h, 4);
lmImagePower(lm.data, lm.w, lm.h, 4, 1.0f / 2.2f, 0x7); // gamma correct color channels
free(temp);
unsigned char *tempub = (unsigned char*)calloc(lm.w * lm.h * 4, sizeof(unsigned char));
lmImageFtoUB(lm.data, tempub, lm.w, lm.h, 4, 1.0f);
im.data = tempub;
im.format = PIXELFORMAT_UNCOMPRESSED_R8G8B8A8;
im.height = lm.w;
im.width = lm.h;
im.mipmaps = 1;
return im;
}
#endif