rayjs/assets/shaders/glsl330/raymarching.fs

430 lines
13 KiB
Forth
Raw Normal View History

2023-05-15 21:02:41 +00:00
#version 330
// Input vertex attributes (from vertex shader)
in vec2 fragTexCoord;
in vec4 fragColor;
// Output fragment color
out vec4 finalColor;
uniform vec3 viewEye;
uniform vec3 viewCenter;
uniform float runTime;
uniform vec2 resolution;
// The MIT License
// Copyright © 2013 Inigo Quilez
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
// A list of useful distance function to simple primitives, and an example on how to
// do some interesting boolean operations, repetition and displacement.
//
// More info here: http://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm
#define AA 1 // make this 1 is your machine is too slow
//------------------------------------------------------------------
float sdPlane( vec3 p )
{
return p.y;
}
float sdSphere( vec3 p, float s )
{
return length(p)-s;
}
float sdBox( vec3 p, vec3 b )
{
vec3 d = abs(p) - b;
return min(max(d.x,max(d.y,d.z)),0.0) + length(max(d,0.0));
}
float sdEllipsoid( in vec3 p, in vec3 r )
{
return (length( p/r ) - 1.0) * min(min(r.x,r.y),r.z);
}
float udRoundBox( vec3 p, vec3 b, float r )
{
return length(max(abs(p)-b,0.0))-r;
}
float sdTorus( vec3 p, vec2 t )
{
return length( vec2(length(p.xz)-t.x,p.y) )-t.y;
}
float sdHexPrism( vec3 p, vec2 h )
{
vec3 q = abs(p);
#if 0
return max(q.z-h.y,max((q.x*0.866025+q.y*0.5),q.y)-h.x);
#else
float d1 = q.z-h.y;
float d2 = max((q.x*0.866025+q.y*0.5),q.y)-h.x;
return length(max(vec2(d1,d2),0.0)) + min(max(d1,d2), 0.);
#endif
}
float sdCapsule( vec3 p, vec3 a, vec3 b, float r )
{
vec3 pa = p-a, ba = b-a;
float h = clamp( dot(pa,ba)/dot(ba,ba), 0.0, 1.0 );
return length( pa - ba*h ) - r;
}
float sdEquilateralTriangle( in vec2 p )
{
const float k = sqrt(3.0);
p.x = abs(p.x) - 1.0;
p.y = p.y + 1.0/k;
if( p.x + k*p.y > 0.0 ) p = vec2( p.x - k*p.y, -k*p.x - p.y )/2.0;
p.x += 2.0 - 2.0*clamp( (p.x+2.0)/2.0, 0.0, 1.0 );
return -length(p)*sign(p.y);
}
float sdTriPrism( vec3 p, vec2 h )
{
vec3 q = abs(p);
float d1 = q.z-h.y;
#if 1
// distance bound
float d2 = max(q.x*0.866025+p.y*0.5,-p.y)-h.x*0.5;
#else
// correct distance
h.x *= 0.866025;
float d2 = sdEquilateralTriangle(p.xy/h.x)*h.x;
#endif
return length(max(vec2(d1,d2),0.0)) + min(max(d1,d2), 0.);
}
float sdCylinder( vec3 p, vec2 h )
{
vec2 d = abs(vec2(length(p.xz),p.y)) - h;
return min(max(d.x,d.y),0.0) + length(max(d,0.0));
}
float sdCone( in vec3 p, in vec3 c )
{
vec2 q = vec2( length(p.xz), p.y );
float d1 = -q.y-c.z;
float d2 = max( dot(q,c.xy), q.y);
return length(max(vec2(d1,d2),0.0)) + min(max(d1,d2), 0.);
}
float sdConeSection( in vec3 p, in float h, in float r1, in float r2 )
{
float d1 = -p.y - h;
float q = p.y - h;
float si = 0.5*(r1-r2)/h;
float d2 = max( sqrt( dot(p.xz,p.xz)*(1.0-si*si)) + q*si - r2, q );
return length(max(vec2(d1,d2),0.0)) + min(max(d1,d2), 0.);
}
float sdPryamid4(vec3 p, vec3 h ) // h = { cos a, sin a, height }
{
// Tetrahedron = Octahedron - Cube
float box = sdBox( p - vec3(0,-2.0*h.z,0), vec3(2.0*h.z) );
float d = 0.0;
d = max( d, abs( dot(p, vec3( -h.x, h.y, 0 )) ));
d = max( d, abs( dot(p, vec3( h.x, h.y, 0 )) ));
d = max( d, abs( dot(p, vec3( 0, h.y, h.x )) ));
d = max( d, abs( dot(p, vec3( 0, h.y,-h.x )) ));
float octa = d - h.z;
return max(-box,octa); // Subtraction
}
float length2( vec2 p )
{
return sqrt( p.x*p.x + p.y*p.y );
}
float length6( vec2 p )
{
p = p*p*p; p = p*p;
return pow( p.x + p.y, 1.0/6.0 );
}
float length8( vec2 p )
{
p = p*p; p = p*p; p = p*p;
return pow( p.x + p.y, 1.0/8.0 );
}
float sdTorus82( vec3 p, vec2 t )
{
vec2 q = vec2(length2(p.xz)-t.x,p.y);
return length8(q)-t.y;
}
float sdTorus88( vec3 p, vec2 t )
{
vec2 q = vec2(length8(p.xz)-t.x,p.y);
return length8(q)-t.y;
}
float sdCylinder6( vec3 p, vec2 h )
{
return max( length6(p.xz)-h.x, abs(p.y)-h.y );
}
//------------------------------------------------------------------
float opS( float d1, float d2 )
{
return max(-d2,d1);
}
vec2 opU( vec2 d1, vec2 d2 )
{
return (d1.x<d2.x) ? d1 : d2;
}
vec3 opRep( vec3 p, vec3 c )
{
return mod(p,c)-0.5*c;
}
vec3 opTwist( vec3 p )
{
float c = cos(10.0*p.y+10.0);
float s = sin(10.0*p.y+10.0);
mat2 m = mat2(c,-s,s,c);
return vec3(m*p.xz,p.y);
}
//------------------------------------------------------------------
vec2 map( in vec3 pos )
{
vec2 res = opU( vec2( sdPlane( pos), 1.0 ),
vec2( sdSphere( pos-vec3( 0.0,0.25, 0.0), 0.25 ), 46.9 ) );
res = opU( res, vec2( sdBox( pos-vec3( 1.0,0.25, 0.0), vec3(0.25) ), 3.0 ) );
res = opU( res, vec2( udRoundBox( pos-vec3( 1.0,0.25, 1.0), vec3(0.15), 0.1 ), 41.0 ) );
res = opU( res, vec2( sdTorus( pos-vec3( 0.0,0.25, 1.0), vec2(0.20,0.05) ), 25.0 ) );
res = opU( res, vec2( sdCapsule( pos,vec3(-1.3,0.10,-0.1), vec3(-0.8,0.50,0.2), 0.1 ), 31.9 ) );
res = opU( res, vec2( sdTriPrism( pos-vec3(-1.0,0.25,-1.0), vec2(0.25,0.05) ),43.5 ) );
res = opU( res, vec2( sdCylinder( pos-vec3( 1.0,0.30,-1.0), vec2(0.1,0.2) ), 8.0 ) );
res = opU( res, vec2( sdCone( pos-vec3( 0.0,0.50,-1.0), vec3(0.8,0.6,0.3) ), 55.0 ) );
res = opU( res, vec2( sdTorus82( pos-vec3( 0.0,0.25, 2.0), vec2(0.20,0.05) ),50.0 ) );
res = opU( res, vec2( sdTorus88( pos-vec3(-1.0,0.25, 2.0), vec2(0.20,0.05) ),43.0 ) );
res = opU( res, vec2( sdCylinder6( pos-vec3( 1.0,0.30, 2.0), vec2(0.1,0.2) ), 12.0 ) );
res = opU( res, vec2( sdHexPrism( pos-vec3(-1.0,0.20, 1.0), vec2(0.25,0.05) ),17.0 ) );
res = opU( res, vec2( sdPryamid4( pos-vec3(-1.0,0.15,-2.0), vec3(0.8,0.6,0.25) ),37.0 ) );
res = opU( res, vec2( opS( udRoundBox( pos-vec3(-2.0,0.2, 1.0), vec3(0.15),0.05),
sdSphere( pos-vec3(-2.0,0.2, 1.0), 0.25)), 13.0 ) );
res = opU( res, vec2( opS( sdTorus82( pos-vec3(-2.0,0.2, 0.0), vec2(0.20,0.1)),
sdCylinder( opRep( vec3(atan(pos.x+2.0,pos.z)/6.2831, pos.y, 0.02+0.5*length(pos-vec3(-2.0,0.2, 0.0))), vec3(0.05,1.0,0.05)), vec2(0.02,0.6))), 51.0 ) );
res = opU( res, vec2( 0.5*sdSphere( pos-vec3(-2.0,0.25,-1.0), 0.2 ) + 0.03*sin(50.0*pos.x)*sin(50.0*pos.y)*sin(50.0*pos.z), 65.0 ) );
res = opU( res, vec2( 0.5*sdTorus( opTwist(pos-vec3(-2.0,0.25, 2.0)),vec2(0.20,0.05)), 46.7 ) );
res = opU( res, vec2( sdConeSection( pos-vec3( 0.0,0.35,-2.0), 0.15, 0.2, 0.1 ), 13.67 ) );
res = opU( res, vec2( sdEllipsoid( pos-vec3( 1.0,0.35,-2.0), vec3(0.15, 0.2, 0.05) ), 43.17 ) );
return res;
}
vec2 castRay( in vec3 ro, in vec3 rd )
{
float tmin = 0.2;
float tmax = 30.0;
#if 1
// bounding volume
float tp1 = (0.0-ro.y)/rd.y; if( tp1>0.0 ) tmax = min( tmax, tp1 );
float tp2 = (1.6-ro.y)/rd.y; if( tp2>0.0 ) { if( ro.y>1.6 ) tmin = max( tmin, tp2 );
else tmax = min( tmax, tp2 ); }
#endif
float t = tmin;
float m = -1.0;
for( int i=0; i<64; i++ )
{
float precis = 0.0005*t;
vec2 res = map( ro+rd*t );
if( res.x<precis || t>tmax ) break;
t += res.x;
m = res.y;
}
if( t>tmax ) m=-1.0;
return vec2( t, m );
}
float calcSoftshadow( in vec3 ro, in vec3 rd, in float mint, in float tmax )
{
float res = 1.0;
float t = mint;
for( int i=0; i<16; i++ )
{
float h = map( ro + rd*t ).x;
res = min( res, 8.0*h/t );
t += clamp( h, 0.02, 0.10 );
if( h<0.001 || t>tmax ) break;
}
return clamp( res, 0.0, 1.0 );
}
vec3 calcNormal( in vec3 pos )
{
vec2 e = vec2(1.0,-1.0)*0.5773*0.0005;
return normalize( e.xyy*map( pos + e.xyy ).x +
e.yyx*map( pos + e.yyx ).x +
e.yxy*map( pos + e.yxy ).x +
e.xxx*map( pos + e.xxx ).x );
/*
vec3 eps = vec3( 0.0005, 0.0, 0.0 );
vec3 nor = vec3(
map(pos+eps.xyy).x - map(pos-eps.xyy).x,
map(pos+eps.yxy).x - map(pos-eps.yxy).x,
map(pos+eps.yyx).x - map(pos-eps.yyx).x );
return normalize(nor);
*/
}
float calcAO( in vec3 pos, in vec3 nor )
{
float occ = 0.0;
float sca = 1.0;
for( int i=0; i<5; i++ )
{
float hr = 0.01 + 0.12*float(i)/4.0;
vec3 aopos = nor * hr + pos;
float dd = map( aopos ).x;
occ += -(dd-hr)*sca;
sca *= 0.95;
}
return clamp( 1.0 - 3.0*occ, 0.0, 1.0 );
}
// http://iquilezles.org/www/articles/checkerfiltering/checkerfiltering.htm
float checkersGradBox( in vec2 p )
{
// filter kernel
vec2 w = fwidth(p) + 0.001;
// analytical integral (box filter)
vec2 i = 2.0*(abs(fract((p-0.5*w)*0.5)-0.5)-abs(fract((p+0.5*w)*0.5)-0.5))/w;
// xor pattern
return 0.5 - 0.5*i.x*i.y;
}
vec3 render( in vec3 ro, in vec3 rd )
{
vec3 col = vec3(0.7, 0.9, 1.0) +rd.y*0.8;
vec2 res = castRay(ro,rd);
float t = res.x;
float m = res.y;
if( m>-0.5 )
{
vec3 pos = ro + t*rd;
vec3 nor = calcNormal( pos );
vec3 ref = reflect( rd, nor );
// material
col = 0.45 + 0.35*sin( vec3(0.05,0.08,0.10)*(m-1.0) );
if( m<1.5 )
{
float f = checkersGradBox( 5.0*pos.xz );
col = 0.3 + f*vec3(0.1);
}
// lighting
float occ = calcAO( pos, nor );
vec3 lig = normalize( vec3(cos(-0.4 * runTime), sin(0.7 * runTime), -0.6) );
vec3 hal = normalize( lig-rd );
float amb = clamp( 0.5+0.5*nor.y, 0.0, 1.0 );
float dif = clamp( dot( nor, lig ), 0.0, 1.0 );
float bac = clamp( dot( nor, normalize(vec3(-lig.x,0.0,-lig.z))), 0.0, 1.0 )*clamp( 1.0-pos.y,0.0,1.0);
float dom = smoothstep( -0.1, 0.1, ref.y );
float fre = pow( clamp(1.0+dot(nor,rd),0.0,1.0), 2.0 );
dif *= calcSoftshadow( pos, lig, 0.02, 2.5 );
dom *= calcSoftshadow( pos, ref, 0.02, 2.5 );
float spe = pow( clamp( dot( nor, hal ), 0.0, 1.0 ),16.0)*
dif *
(0.04 + 0.96*pow( clamp(1.0+dot(hal,rd),0.0,1.0), 5.0 ));
vec3 lin = vec3(0.0);
lin += 1.30*dif*vec3(1.00,0.80,0.55);
lin += 0.40*amb*vec3(0.40,0.60,1.00)*occ;
lin += 0.50*dom*vec3(0.40,0.60,1.00)*occ;
lin += 0.50*bac*vec3(0.25,0.25,0.25)*occ;
lin += 0.25*fre*vec3(1.00,1.00,1.00)*occ;
col = col*lin;
col += 10.00*spe*vec3(1.00,0.90,0.70);
col = mix( col, vec3(0.8,0.9,1.0), 1.0-exp( -0.0002*t*t*t ) );
}
return vec3( clamp(col,0.0,1.0) );
}
mat3 setCamera( in vec3 ro, in vec3 ta, float cr )
{
vec3 cw = normalize(ta-ro);
vec3 cp = vec3(sin(cr), cos(cr),0.0);
vec3 cu = normalize( cross(cw,cp) );
vec3 cv = normalize( cross(cu,cw) );
return mat3( cu, cv, cw );
}
void main()
{
vec3 tot = vec3(0.0);
#if AA>1
for( int m=0; m<AA; m++ )
for( int n=0; n<AA; n++ )
{
// pixel coordinates
vec2 o = vec2(float(m),float(n)) / float(AA) - 0.5;
vec2 p = (-resolution.xy + 2.0*(gl_FragCoord.xy+o))/resolution.y;
#else
vec2 p = (-resolution.xy + 2.0*gl_FragCoord.xy)/resolution.y;
#endif
// RAY: Camera is provided from raylib
//vec3 ro = vec3( -0.5+3.5*cos(0.1*time + 6.0*mo.x), 1.0 + 2.0*mo.y, 0.5 + 4.0*sin(0.1*time + 6.0*mo.x) );
vec3 ro = viewEye;
vec3 ta = viewCenter;
// camera-to-world transformation
mat3 ca = setCamera( ro, ta, 0.0 );
// ray direction
vec3 rd = ca * normalize( vec3(p.xy,2.0) );
// render
vec3 col = render( ro, rd );
// gamma
col = pow( col, vec3(0.4545) );
tot += col;
#if AA>1
}
tot /= float(AA*AA);
#endif
finalColor = vec4( tot, 1.0 );
}